
19/09/18 Laurent Thomas, Open Cells 1

OpenAirInterface developer doc

● Provide OpenAir information for a new project
– Aim to use and modify OAI

19/09/18 Laurent Thomas, Open Cells 2

OpenAir features status
● OAI development

– Basic 4G working with commercial UE or OAI UE, commercial EPC or OAI EPC
– 4G features

● FDD & TDD
● 5/10/20MHz SISO
● MIMO has been working, transmission modes partially coded
● Carrier aggregation (Partially coded)
● Handover, paging (partially)
● HARQ
● Multi-UE: working but unstable, static declaration of max UE
● radio scheduling: basic
● QCI and bearers: not developed
● RLC UM: working, AM (acknowledged mode): existing but bugged

– The introduction of NFAPI (small cells forum API) disturbed a lot the OAI eNB
● A lot of pending work to merge (expecting this NFAPI version progress) from all OSA members

– 5G, new radio
– NB-IoT
– Multi-UE improvements
– Several private versions or branches exist

–

19/09/18 Laurent Thomas, Open Cells 3

OpenAir Code availability

● All eNB+UE code is in a dedicated gitlab repository
– specific FRAND for eNB and UE licence

● Fair, Reasonable and Non Discriminatory (FRAND) is the general way to use 3GPP
standards. These standards embed “essential patents”. 3GPP standard
implementation must use these patents.

● EPC migrated to Github
– Apache 2 licence

● Third party
– Run in Linux, several distributions
– Extensive usage of other open source

19/09/18 Laurent Thomas, Open Cells 4

OpenAir RAN source management

● https://gitlab.eurecom.fr/oai/openairinterface5g
● GitLab process

– Issues, merge, … as per GitLab process
– Continuous integration in a Jenkins server

https://oailab.eurecom.fr:8083/jenkins/job/eNb-CI/

– Master branch is called “develop”
– Master branch contains old major releases

https://gitlab.eurecom.fr/oai/openairinterface5g
https://oailab.eurecom.fr:8083/jenkins/job/eNb-CI/%22%20%5Ct%20%22_top

19/09/18 Laurent Thomas, Open Cells 5

OpenAir RAN binary generation

● Cmake driven
– the directory cmake_targets

● Cmake file that drives the compilation.

● Head script
– build_oai script creates a set of specific build trees from

the cmake file to produce each use case binaries
● simulation,
● RF boards,
● reduced versions (like without the 3GPP core network)

19/09/18 Laurent Thomas, Open Cells 6

OpenAir RAN source tree

● Openair1
– Contains the L1 code

● Openair2
– L2 code and most of common code

● Openair3
– L3 code

● Common
– Common services

● Targets
– Main function (process entry) C code
– Per RF board code (targets/ARCH)
– Runtime configuration files:In source tree, the directory cmake_targets contains a Cmake file that drives the

compilation.
– A script build_oai creates a set of specific build trees from the cmake file to produce each use case binaries:

simulation, RF boards, reduced versions (like without the 3GPP core network)

19/09/18 Laurent Thomas, Open Cells 7

OpenAir RAN datamodel

● All pieces of code access a global structure
– RAN_CONTEXT_t RC;

19/09/18 Laurent Thomas, Open Cells 8

OpenAir data model per layer

● Each layer has structures pointed under “RC”
● Example
● See doc

19/09/18 Laurent Thomas, Open Cells 9

OpenAir RAN multi-thread

● A Middleware called “itti” (interthread interface)
– Classical send/receive message queues
– Able to manage in the main loop

● external sockets
● Timers

● Dedicated hard coded threads in L1
– Example: fep (front end processing)

● Creates a second thread to process in // the two halves of a
LTE sub-frame

19/09/18 Laurent Thomas, Open Cells 10

OpenAir itti (middleware)

● All queues are created in .h files, as static permanent queues
– The queues are called tasks because it is often read in a single thread that have the

same name
● itti_send_msg_to_task, itti_receive_msg, itti_poll_msg

– Standard messages queues, thread safe
– The reader is responsible of freeing the message

● itti_subscribe_event_fd, itti_get_events
– Add external sockets to itti based main loop

● timer_setup timer_remove
– When a timer expire, it adds a message in a itti queue

● itti_terminate_tasks
– Calling this function push a “terminate” message on each itti queue

19/09/18 Laurent Thomas, Open Cells 11

OpenAir generic main loop
Thread_aLayer_main(void * context) {

 // initialize the layer data

 // and register in itti the external sockets (like S1AP, GTP)

 aLayer_init();

 while (1) {

 MessageDef * msg

 itti_receive_msg(TASK_aLayer, &msg);

 // itti receive released, so we have incoming data

 // Can be a itti message

 if (msg != NULL) {

 switch(ITTI_MSG_ID(msg)) {

 case …:

 processThisMsgType1(msg);

 break;

 case …:

 processThisMsgType2(msg);

 break;

 }

 Itti_free(msg);

 }

 // or data/event on external entries (sockets)

 Struct eppol_events* events;

 int nbEvents=itti_get_events(TASK_aLayer, &events);

 if (nbEvents > 0)

 processLayerEvents(events, nbEvents);

 }

}

19/09/18 Laurent Thomas, Open Cells 12

Threads running itti design pattern

● UDP, SCTP
– Simple threads that interface itti internal messages to Linux

● GTPV1-I, S1AP
– Threads to implement S1QP and GTP protocols

● PDCP
– Pdcp is not following itti design pattern, but it uses itti internally

● RRC
– Implements 3GPP Rrc features
– Interfaces the layer 1 and the above itti tasks

● X2, ENP_APP (configuration), L1L2
– Are declared itti queues with a dedicated thread, but they are almost empty

19/09/18 Laurent Thomas, Open Cells 13

Layer 1 design

● General conception
– No threads/messaging
– Functions calls, may vary by setting function pointer

● Example: RF board interface
– trx_xxxx_func where xxxx can be start, read, write, end
– These functions implements the RF broad interface

– Main loop
● Is the thread “ru_thread”

19/09/18 Laurent Thomas, Open Cells 14

Layer 1 main loop

● In ru_thread, while(!oai_exit) {
– Increment the sub-frame counter

● OpenAir RAN processes sub-frames, all the code is organized for
this

– Read input data: ru→fh_south_in reads the input
– Either sends dedicated posix signals (pthread_cond_signal())

 or calls directly processing functions
– ru→north_out() sends output data
– Loop back on the while()

19/09/18 Laurent Thomas, Open Cells 15

L1 on multi-core CPU

● L1 pieces are multi-threaded as in above L1 main loop
description

● Example: “fep” is doing “front end processing” work
– It can be a call to “fep_full()”

● that do all work in sequence
– Or it can be a call to “ru_fep_full_2thread()”

● That send a signal to thread fep_thread() to process a slot (half of the sub-
frame)

● Process the second slot inside the main thread
● Wait the thread fep_thread() processing end signal to continue in

sequence

19/09/18 Laurent Thomas, Open Cells 16

OpenAir RAN initialization

● 3GPP implementation leads to create a lot of constants tables, of
look-up tables

– Some tables are generated of line by matlab code
– Some non parameter dependent tables are generated in init_lte_top()

(but rarely uses parameters)
– Some are generated in various functions depending on where is

processed the configuration file information
● Memory allocation

– 95% of the code uses permanently allocated memory chained behind
the global variable “RC”

– It is initialized in many places

19/09/18 Laurent Thomas, Open Cells 17

OpenAir RAN eNB configuration

● The eNB uses a configuration file
– TBD

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

